Definición de relación matemática
Una relación es un vínculo o una correspondencia. En el caso de la relación matemática, se trata de la correspondencia que existe entre dos conjuntos: a cada elemento del primer conjunto le corresponde al menos un elemento del segundo conjunto.
Cuando a cada elemento de un conjunto le corresponde solo uno del otro, se habla de función. Esto quiere decir que las funciones matemáticas siempre son, a su vez, relaciones matemáticas, pero que las relaciones no siempre son funciones.
Las relaciones matemáticas establecen la correspondencia entre dos conjuntos.
Características de las relaciones matemáticas
En una relación matemática, al primer conjunto se lo conoce como dominio, mientras que el segundo conjunto recibe el nombre de rango o recorrido. Las relaciones matemáticas existentes entre ellos se pueden graficar en el esquema llamado plano cartesiano.
Supongamos que el dominio se llama M y el rango, N. Una relación matemática de M en N será un subconjunto del producto cartesiano M x N. Las relaciones, en otras palabras, serán pares ordenados que vinculen elementos de M con elementos de N.
Si M = {5, 7} y N = {3, 6, 8}, el producto cartesiano de M x N serán los siguientes pares ordenados:
M x N = {(5, 3), (5, 6), (5, 8), (7, 3), (7, 6), (7, 8)}
Con este producto cartesiano, se pueden definir diferentes relaciones. La relación matemática del conjunto de pares cuyo segundo elemento es menor a 7 es R = {(5, 3), (5, 6), (7, 3), (7, 6)}
Otra relación matemática que puede definirse es aquella del conjunto de pares cuyo segundo elemento es par: R = {(5, 6), (5, 8), (7, 6), (7, 8)}
Los números pueden aparecer en el producto cartesiano.
Aplicación del concepto
Las aplicaciones de las relaciones matemáticas trascienden los límites de la ciencia, ya que en nuestra vida cotidiana solemos hacer uso de sus principios, muchas veces de manera inconsciente. Seres humanos, edificios, electrodomésticos, películas y amigos, entre otros muchos, son algunos de los conjuntos más comunes de interés para nuestra especie, y a diario establecemos relaciones entre ellos para organizarnos y participar de nuestras actividades.
De acuerdo con el número de conjuntos que participen del producto cartesiano, es posible reconocer diversos tipos de relación matemática, algunos de los cuales se definen brevemente a continuación.
Relación unaria
Una relación unaria se da cuando se observa un solo conjunto, y la misma puede definirse como el subconjunto de los elementos que pertenecen al mismo y cumplen una condición determinada, expresada en la relación. Por ejemplo, dentro del conjunto de números naturales, podemos definir una relación unaria (a la cual llamaremos P) de los números pares, de manera que de todos los elementos de este conjunto, tomaremos aquéllos que respondan a dicha condición y formaremos un subconjunto, el cual comienza de la siguiente manera: P = {2,4,6,8,…}
Relación binaria
Como su nombre lo indica, esta relación matemática parte de dos conjuntos, y por lo tanto la complejidad aumenta considerablemente. Los elementos de ambos pueden relacionarse de más formas, y los subconjuntos resultantes se expresan como pares ordenados, tal como se demuestra en párrafos anteriores. En las matemáticas, esto suele estar de fondo en muchas de las funciones más comunes, que tienen como variables y y x, ya que se busca un par de valores (uno de cada eje) que permitan resolver una ecuación (que cumplan la condición).
Relación ternaria
Cuando definimos una condición que deben cumplir elementos de tres conjuntos diferentes, hablamos de relación ternaria, y el resultado es una o más ternas (el equivalente a los pares ordenados pero con tres elementos). Retomando el conjunto de números naturales, que nos permite hacer cálculos sencillos, un ejemplo de relación matemática de este tipo es aquélla en la cual a – b = c, de manera que podríamos obtener un subconjunto que comienza así: R = {(3,2,1), (4,3,1), (5,3,2), …}